Close X


Call: Key oceanic and polar processes driving regional & global climate change

Logo
Programme
Acronym HORIZON-CL6-CLIMATE
Type of Fund Direct Management
Description of programme
"Horizon Europe - Cluster 6 - Destination 5: Land, ocean and water for climate action"

Assessing the impacts of climate change on our land and marine environments, natural resources, agriculture and food systems, and identifying mitigation options and adaptation pathways, requires interdisciplinary and multidisciplinary research and investments across a broad range of activities. Research is needed to better understand who or what is exposed and sensitive to these changes, their underlying vulnerability, the associated costs and adaptive capacity. Research is also required to provide mitigation options that reduce the risk of long-term climate change

The conservation and enhancement of Earth’s natural carbon sinks such as soils and plants, forests, farmed lands, wetlands and the oceans is crucial. The European Green Deal green oath to “do no harm”, requires a careful examination of the trade-offs and synergies among the sustainability goals, including health protection, food and nutrition security, ecosystem services and biodiversity preservation both on land and at sea. R&I has a significant role to play to support the design and implementation of policies that will ensure the achievement of EU climate objectives.

Agriculture has a significant role to play to reduce and mitigate GHG emissions and to enhance carbon sinks. It also needs to strengthen its capacity to adapt to climate change and its resilience. The forestry sector faces similar challenges.

Freshwater resources are increasingly under stress as a consequence of overuse and climate change with wide-ranging consequences for human societies and ecosystems. It is therefore necessary to define the safe operating space in terms of water quantity and availability, reduce the vulnerability to change and enhance our adaptive capacity.

Strengthening the ocean and climate nexus is another priority for the EU. There is growing political awareness of the importance of ocean and polar regions as an integral part of the Earth’s climate system and of the need to ensure the integrity and resilience of these ecosystems.

While new knowledge leading to a better understanding of the impacts of climate change is necessary, a strong priority needs to be granted to the large-scale deployment and uptake of solutions for climate adaptation and mitigation. Environmental observations and related solutions will be necessary throughout, from understanding to deployment.

Understanding the impacts of climate change on primary production and natural systems is a pre-requisite for policy and societal action on climate change adaptation and mitigation. At present, our understanding of the interactions between climate change and ecosystem management, protection and restoration is limited, yet it is crucial to enabling sound decision making for mitigation and adaptation measures. Monitoring and evaluation of the impacts of climate change, land use change and associated biodiversity loss on a range of key issues related to agriculture and forestry are crucial with respect to the transition to net-zero emissions in the EU. R&I are also needed to close knowledge gaps in support of decision-making aimed at preserving the integrity of ocean and aquatic ecosystems through a better understanding of the drivers of change and of emerging threats. Moreover, since water availability is vulnerable to climate change, it is necessary to improve the projections of changes to the water cycle at different relevant scales and projections of the frequency and intensity of extreme events. We also require improved long-term observations and assessment of the effects of climate change on diverse water uses and on the state of ecosystems and their services.

Reducing GHG emissions and enhancing carbon sinks in primary production and natural systems are key elements of the European Green Deal. Achieving sustainable land management and efficient use of natural resources that foster climate change mitigation implies finding the right balance between productivity, climate, biodiversity and environmental goals in the agriculture and forestry sectors, with a long-term perspective. R&I activities will support solutions for climate- and environmentally-friendly practices, to reduce emissions of major greenhouse gases and the environmental footprint of land use changes and agricultural activities. R&I, new technologies and business models are expected to unlock the full potential of LULUCF[[LULUCF stands for land use, land use change and forestry.]] activities in the mitigation of climate change. Results of funded activities will benefit land and forest management and the delivery of multiple services provided by land and forests, such as the provision of goods as long-term carbon stocks in harvested wood products, peatlands and wetlands, the protection of soils, water and biodiversity and finally climate change adaptation and mitigation. Ocean is also a large storage system for the global reservoirs of climate-regulating factors. R&I will advance knowledge innovations to foster ocean-based solutions/mitigation options, helping to close the emissions gap.

Climate action calls also for fostering adaptation to climate change of ecosystems, primary production, food systems and the bioeconomy. Climate change is exacerbating existing risks to livelihoods, biodiversity, human and ecosystem health, infrastructure and food systems. There are growing concerns regarding the role of climate change in the spreading of new plant and terrestrial and aquatic animal diseases, which can jeopardise food safety and security. Human activities relying on the availability and use of water are particularly impacted by variable and extreme weather events, which may at the same time lead to desertification. Agriculture and forestry in the EU are vulnerable to climate change. There is in particular growing evidence about the effects of climate change, and of extreme weather events, on agricultural production and crop yields, which need to be mitigated, and also on the forest sector. Coastal areas are also threatened by sea level rise, saline water intrusion, biodiversity loss, ocean acidification, extreme events and a shrinking cryosphere. R&I will, therefore, be critical to foster adaptation and build resilience in agriculture, forestry and coastal areas. They will aim to deliver on the urgent need to foster the adaptation of primary production, notably by providing farmers and other actors in bioeconomy value chains with better-adapted crop varieties and animal breeds with lower impacts on the related ecosystems. R&I efforts are critical to avoiding, reducing and reversing desertification. Water adaptation strategies and approaches will be developed and tested. Appropriate solutions including water allocation schemes will be developed for businesses, farmers and ecosystems. Potential trade-offs, and measures to mitigate and avoid them, will be assessed to ensure environmental sustainability and to keep the objectives of enhancing soil fertility, increasing carbon storage in soils and biomass, benefitting agricultural productivity and food security and reducing biodiversity loss. R&I will also aim at better understanding how institutions and behaviour shape vulnerability and offer opportunities for adaptation.

Expected impacts

Proposals for topics under this destination should set out a credible pathway to contributing to climate action on land, oceans and water and more specifically to one or several of the following impacts:

  • Better understanding and enhancing the mitigation potential of ecosystems and sectors based on the sustainable management of natural resources;
  • Advanced understanding and science to support adaptation and resilience of natural and managed ecosystems, water and soil systems and economic sectors in the context of the changing climate;
  • Efficient monitoring, assessment and projections related to climate change impacts, mitigation and adaptation potential in order to bring out solutions for tackling emerging threats and support decision-making in climate change mitigation and adaptation policies at European and global levels;
  • Fostered climate change mitigation in the primary sector , including by the reduction of GHG emissions, maintenance of natural carbon sinks and enhancement of sequestration and storage of carbon in ecosystems;
  • Improved adaptive capacity of water and soil systems and sectors including by unlocking the potential of nature-based solutions;
  • Better managed scarce resources, in particular soils and water, thus mitigating climate related risks, in particular desertification and erosion, thanks to informed decision-makers and stakeholders and integration of adaptation measures in relevant EU policies.

When considering their impact, proposals also need to assess their compliance with the “Do No Significant Harm” principle [[as per Article 17 of Regulation (EU) No 2020/852 on the establishment of a framework to facilitate sustainable investment (EU Taxonomy Regulation)]] according to which the research and innovation activities of the project should not be supporting or carrying out activities that make a significant harm to any of the six environmental objectives of the EU Taxonomy Regulation.

This destination contributes to support R&I on climate for areas covered by Cluster 6 notably on the implementation of climate change mitigation and adaptation solutions while Destination “Climate sciences and responses for the transformation towards climate neutrality” in Cluster 5 concentrates on activities related to climate science and modelling.

Topics under this destination will have impacts in the following impact areas of the Horizon Europe strategic plan for 2021-2024 [[Footnote indicating link to the document.]]: “Climate change mitigation and adaptation”; “Enhancing ecosystems and biodiversity on land and in water”; “Clean and healthy air, water and soil”; “Sustainable food systems from farm to fork on land and sea”; ”A resilient EU prepared for emerging threats”; “A secure and open EU society”; and “Inclusive growth and new job opportunities”.

Link Link to Programme
Call
Key oceanic and polar processes driving regional & global climate change
Description of call
"Key oceanic and polar processes driving regional & global climate change"

Expected Outcome:

In support to the European Green Deal and climate initiatives, and the EU Arctic Policy, successful proposals will contribute to strengthening the ocean - climate nexus and our understanding of the ocean and polar regions, as an integral part of the Earth’s climate system. Successful proposals will further the science for understanding key processes that link the ocean to climate and people. They will allow for a better understanding of the nature and magnitude of these processes, and the impact of human activity on them. Given their specific vulnerability to climate change, this knowledge may help formulate the appropriate policy action to better protect the ocean and the polar regions and help ensure their health, integrity and resilience.

Project results are expected to contribute to all of the following expected outcomes:

  • Increased predictability and reduced uncertainty associated with key oceanic and polar processes and advanced understanding and science of the ocean-climate nexus.
  • Contribution to the next generation observation and modelling of key ocean-climate processes and indicators.
  • Contribution to the implementation of the EU Arctic Policy, the All-Atlantic Ocean Research Alliance, the European Commission-European Space Agency flagship action on polar changes & global impacts, European climate policies and a substantial contribution to key international assessments, such as the Intergovernmental Panel on Climate Change (IPCC), Intergovernmental Science-Policy Platform on Biodiversity and ecosystem services (IPBES), World Ocean Assessment (WOA) and other major regional and global initiatives.

Scope:

The Atlantic Meridional Overturning Circulation (AMOC) is a key component of the Earth climate. It can significantly imprint the vertical structure of global ocean heat uptake and drives a large part of the deep-ocean oxygenation and deep storage of anthropogenic carbon. The AMOC is expected to slow down with climate change with strong impact on the oceanic heat storage, carbon pump, and ventilation. Such change in the AMOC is also expected to impact the polar regions that are already experiencing warming at a faster rate than other places. Indeed, the current climate in polar regions is influenced by interactions between the ice sheets, the ocean, sea ice and atmosphere, and their response to anthropogenic climate forcing. Both the Arctic and Antarctic are connected to global climate through several feedback mechanisms, such as the AMOC, snow albedo effect, sea level rise from melting glaciers and ice sheets, changing terrestrial ecosystems that lead to changes in fluxes of carbon dioxide, and methane nutrients. Several of these processes exhibit tipping points (e.g. methane hydrate release in a warming Arctic Ocean, thawing permafrost and release of carbon). Potential tipping points in the polar regions include a significant slowdown of the AMOC and a destabilization of Greenland and Antarctica ice sheets. There is deep uncertainty regarding the contribution the melting of the Antarctic ice sheet will make to mean global sea level rise towards the end of this century. The potential consequences vary greatly from region to region making the information needed at local and regional level highly relevant for supporting local and regional adaptation decisions. The Southern Ocean controls the natural release of CO2 from the ocean, helps to absorb anthropogenic CO2 and modulates transport of heat towards the Antarctic ice cap. The largest anthropogenic storage of CO2 is in the North Atlantic. The observational record is not long enough to determine if changes observed in the circulation of the Atlantic and Southern Oceans are due to natural variability, or are a response to anthropogenic forcing.

Actions should aim at developing innovative approaches to address only one of the following options:

Regional & global components of the Atlantic meridional overturning circulation (AMOC):

Actions should further the research on how and why the AMOC has changed over time, and how it will evolve in the future. Actions should endeavour to understand the entire system of the AMOC, as well as its links with the world ocean circulation system, in particular with the polar oceans. Actions should enable the sustained and sustainable observation of the AMOC by improving, developing and/or deploying existing and novel methods and technologies to observe the AMOC and its functions in the Earth system, and may include the development of advanced methods and digital technologies such as machine learning algorithms and multiple observational constraints. Observations should address climate change indicators, including indicators of past climate change, measurements of ocean heat content and currents, carbon dioxide solubility and fluxes, modifications of ocean circulation and climate feedbacks.

Action should address observational gaps of existing AMOC observing systems, focusing for example on formation regions, ocean boundaries and topographic constriction points, which are not or only poorly observed by large-scale observation systems such as the Argo array of profiling floats, or current generation satellite altimeters. Emerging technologies such as ocean gliders, remote mooring telemetry and autonomous vehicles offer opportunities to streamline traditional transport mooring arrays. This will lead to a more precise assessment (key for e.g. IPCC reports) of the risk of rapid changes using the newly released CMIP6 database and high-resolution models developed, inter alia, within the EU Horizon 2020 framework programme. Actions should add new observations of biogeochemical parameters (including carbon) and ecosystem-relevant quantities to observing arrays, thus providing synergy and optimisation of the long-term research infrastructure. Actions should also include reconstructions of deep boundary current intensities at different time scales to better discriminate/characterise anthropogenic impact from natural variability during the observational period. Actions should focus on improving models to better understand short-term variability and impacts on European and global climate. Moreover, action should interpret the recent changes in this context, to understand how close we may be to a climate tipping point.

Improving understanding and observation of Antarctic key processes and the Southern Ocean circulation:

Actions should endeavour to reduce the deep uncertainty regarding the Antarctic contribution to global mean sea level rise towards the end of this century. Action should further the science and understanding of the dynamics of the Antarctic ice sheet and its climatic triggers, which constitute the major source of uncertainty about sea level rise. Actions should endeavour to understand the sensitivity of the low-latitudinal oceans to freshwater fluxes in order to advance the comprehension of the dynamics and functioning of the southern sources of deep waters, the Antarctic bottom water (AABW) circulation and thus counteract the deficit of scientific knowledge limiting the complete understanding of decadal to millennial time-scale climate change. Actions should focus on the potential importance of feedbacks between the northern and southern sources of deep waters. Actions should endeavour to close the gap towards producing an integrated view of the planet's climate system and the role of Antarctica in it. Actions should focus on understanding the Antarctica climate variability, Antarctic surface mass balance and the forces that control future change and responses to change, including tipping points. Actions should research the Antarctic ice sheet dynamics and integrate this knowledge into coupled ice sheet-climate models adapted to the Antarctic and Southern Ocean region, in order constrain and improve the accuracy and precision of predictions of future changes in global and regional temperatures, ocean acidification and sea level rise. Actions should reduce the gap in ocean observations in the Antarctica allowing for improved sea ice and weather forecasting and other environmental predictions that could improve the quality of various applications including search and rescue, coupling with numerical weather and seasonal predictions, historical reconstructions (reanalysis), aquaculture and environmental management including environmental emergency response. Actions should endeavour to understand how ice-shelf loss in Antarctica link with and impact on the ocean’s circulations system, in particular the AMOC, and the relationship between the relative strength of the Antarctic circumpolar current (ACC) and AMOC.

For both options, international cooperation is strongly encouraged, with a strong linkage with the ongoing activities under the All-Atlantic Ocean Research Alliance, with participation from bordering countries and countries – beyond the EU Member States and countries associated to Horizon Europe – that took part in the Arctic Science Ministerial. Actions under this topic should plan on a close collaboration among each other and with the EU Polar Cluster. Actions should build upon and link with past Horizon 2020 projects, EU PolarNET2, Copernicus, Sustaining Arctic Observing Networks (SAON), Scientific Committee on Antarctic Research (SCAR) and Southern Ocean Observing System (SOOS), and other international Ocean Observing Initiatives. The R&I needs to be conducted in a multidisciplinary and ecosystem-based approach. All in-situ data collected through actions funded from this call should follow INSPIRE principles and be made available through open access repositories supported by the European Commission (Copernicus, GEOSS, and EMODnet).

This topic links with research conducted under Cluster 5 (‘Climate, Energy and Mobility’) Destination ‘Climate sciences and responses’ and Cluster 6 (‘Food, Bioeconomy, Natural Resources, Agriculture and Environment’) Destination ‘Land, ocean and water for climate action’ and Destination ‘Innovative governance, environmental observations and digital solutions in support of the European Green Deal’, Deploying and adding value to Environmental Observations.

Link Link to Call
Thematic Focus Research & Innovation, Technology Transfer & Exchange, Capacity Building, Cooperation Networks, Institutional Cooperation, Clustering, Development Cooperation, Economic Cooperation, Climate, Climate Change, Environment & Biodiversity, Circular Economy, Sustainability, Natural Resources, Agriculture & Forestry, Fishery, Food, Green Technologies & Green Deal, Administration & Governance, Competitiveness, SME, Health, Social Affairs, Sports, Disaster Prevention, Resiliance, Risk Management
Funding area EU Member States
Overseas Countries and Territories (OCTs)
Origin of Applicant EU Member States
Overseas Countries and Territories (OCTs)
Eligible applicants Research Institution, Small and Medium Sized Enterprises, SMEs (between 10 and 249 employees), NGO / NPO, University, Enterprise (more than 250 employees or not defined), Public Services, Microenterprises (fewer than 10 employees), Start Up Company, International Organization, Federal State / Region / City / Municipality / Local Authority, National Government
Applicant details

eligible non-EU countries:

  • countries associated to Horizon Europe
At the date of the publication of the work programme, there are no countries associated to Horizon Europe. Considering the Union’s interest to retain, in principle, relations with the countries associated to Horizon 2020, most third countries associated to Horizon 2020 are expected to be associated to Horizon Europe with an intention to secure uninterrupted continuity between Horizon 2020 and Horizon Europe. In addition, other third countries can also become associated to Horizon Europe during the programme. For the purposes of the eligibility conditions, applicants established in Horizon 2020 Associated Countries or in other third countries negotiating association to Horizon Europe will be treated as entities established in an Associated Country, if the Horizon Europe association agreement with the third country concerned applies at the time of signature of the grant agreement.

  • low-and middle-income countries

Legal entities which are established in countries not listed above will be eligible for funding if provided for in the specific call conditions, or if their participation is considered essential for implementing the action by the granting authority.

Specific cases:

  • Affiliated entities - Affiliated entities are eligible for funding if they are established in one of the countries listed above.
  • EU bodies - Legal entities created under EU law may also be eligible to receive funding, unless their basic act states otherwise.
  • International organisations - International European research organisations are eligible to receive funding. Unless their participation is considered essential for implementing the action by the granting authority, other international organisations are not eligible to receive funding. International organisations with headquarters in a Member State or Associated Country are eligible to receive funding for ‘Training and mobility’actions and when provided for in the specific call conditions.
Project Partner Yes
Project Partner Details

Unless otherwise provided for in the specific call conditions , legal entities forming a consortium are eligible to participate in actions provided that the consortium includes:

  • at least one independent legal entity established in a Member State;and
  • at least two other independent legal entities, each established in different Member States or Associated Countries.
Further info

Proposal page limits and layout:

The application form will have two parts:

  • Part A to be filled in directly online  (administrative information, summarised budget, call-specific questions, etc.)
  • Part B to be downloaded from the Portal submission system, completed and re-uploaded as a PDF in the system

Page limit - Part B: 45 pages

Type of Funding Grants
Financial details
Expected EU contribution per projectThe Commission estimates that an EU contribution of between EUR 7.00 and 8.00 million would allow these outcomes to be addressed appropriately. Nonetheless, this does not preclude submission and selection of a proposal requesting different amounts.
Indicative budgetThe total indicative budget for the topic is EUR 15.00 million.
Typ of ActionResearch and Innovation Actions (RIA)
Funding rate100%

Activities are expected to achieve TRL 3-5 by the end of the project.

To ensure a balanced portfolio, grants will be awarded to applications not only in order of ranking but at least also to those that are the highest ranked within set topics, provided that the proposals attain all thresholds.
Submission Proposals must be submitted electronically via the Funding & Tenders Portal Electronic Submission System. Paper submissions are NOTpossible.

Register now and benefit from additional services - it is free of cost!

News

Published on 17.10.2021

Hubs for Circularity European Community of Practice (ECoP) platform (Processes4Planet Partnership)

Link to Call

Published on 17.10.2021

Carbon Dioxide Removal (CDR) approaches

Horizon Europe - Cluster 5 - Destination 1: Climate sciences and responses for the transformation towards climate neutrality

Link to Call
Loading Animation