Close X


Call: Advanced multimodal network and traffic management for seamless door-to-door mobility of passengers and freight transport

Logo
Programme
Acronym HE-CL5-D6
Type of Fund Direct Management
Description of programme
"Horizon Europe - Cluster 5 - Destination 6: Safe, Resilient Transport and Smart Mobility services for passengers and goods"

This Destination includes activities addressing safe and smart mobility services for passengers and goods.

Europe needs to manage the transformation of supply-based transport into safe, resilient and sustainable transport and demand-driven, smart mobility services for passengers and goods. Suitable research and innovation will enable significant safety, environmental, economic and social benefits by reducing accidents caused by human error, decreasing traffic congestion, reducing energy consumption and emissions of vehicles, increasing efficiency and productivity of freight transport operations. To succeed in this transformation, Europe’s ageing (and not always sustainable) transport infrastructure needs to be prepared for enabling cleaner and smarter operations.

Europe needs also to maintain a high-level of transport safety for its citizens. Resilience should be built in the transport systems to prevent, mitigate and recover from disruptions. Research and innovation will underpin the three safety pillars: technologies, regulations and human factors.

This Destination contributes to the following Strategic Plan’s Key Strategic Orientations (KSO):

  • C: Making Europe the first digitally enabled circular, climate-neutral and sustainable economy through the transformation of its mobility, energy, construction and production systems;
  • A: Promoting an open strategic autonomy[[‘Open strategic autonomy’ refers to the term ‘strategic autonomy while preserving an open economy’, as reflected in the conclusions of the European Council 1 – 2 October 2020.]] by leading the development of key digital, enabling and emerging technologies, sectors and value chains to accelerate and steer the digital and green transitions through human-centred technologies and innovations.

It covers the following impact areas:

  • Industrial leadership in key and emerging technologies that work for people;
  • Smart and sustainable transport.

The expected impact, in line with the Strategic Plan, is to contribute to “Safe, seamless, smart, inclusive, resilient and sustainable mobility systems for people and goods thanks to user-centric technologies and services including digital technologies and advanced satellite navigation services”, notably through:

  1. Accelerating the implementation of innovative connected, cooperative and automated mobility (CCAM) technologies and systems for passengers and goods (more detailed information below).
  2. Further developing a multimodal transport system through sustainable and smart long-haul and urban freight transport and logistics, upgraded and resilient physical and digital infrastructures for smarter vehicles and operations, for optimised system-wide network efficiency (more detailed information below).
  3. Drastically decreasing the number of transport accidents, incidents and fatalities towards the EU’s long-term goal of moving close to zero fatalities and serious injuries by 2050 even in road transportation (Vision Zero) and increase the resilience of transport systems (more detailed information below).

Connected, Cooperative and Automated Mobility (CCAM)

The aim of relevant topics under this Destination is to accelerate the implementation of innovative connected, cooperative and automated mobility (CCAM) technologies and systems. Actions will help to develop new mobility concepts for passengers and goods – enabled by CCAM - leading to healthier, safer, more accessible, sustainable, cost-effective and demand-responsive transport everywhere. CCAM solutions will shift design and development from a driver-centred to mobility-user oriented approach, providing viable alternatives for private vehicle ownership while increasing inclusiveness of mobility. CCAM must be integrated in the whole transport system to fully exploit the potential benefits of CCAM and minimise potential adverse effects, such as increasingly congested traffic or new risks in mixed traffic environments.

The focus is on road transport, but relevant interfaces with other modes (for instance transfers and integration with public transport or rail freight transport) will be considered.

All technologies, solutions, testing and demonstration activities resulting from these actions should be documented fully and transparently, to ensure replicability, increase adoption, up-scaling, assist future planning decisions and EU and national policy-making and increase citizen buy-in.

Actions are in line with the recommendations of the new European Partnership on CCAM. The Vision of the Partnership is: “European leadership in safe and sustainable road transport through automation”. It aims to harmonise European R&I efforts to accelerate the implementation of innovative CCAM technologies and services. It aims to exploit the full systemic benefits of new mobility solutions enabled by CCAM. The European Partnership on CCAM plans to closely cooperate with other European Partnerships, in particular with “Towards zero emission road transport” (2ZERO), “Driving Urban Transitions” (DUT), “Key digital technologies” (KDT), “Smart networks and services” (SNS) and “AI, data and robotics” (AI). The European Partnership will establish cooperation mechanisms to ensure close interaction when defining R&I actions to maximise synergies and avoid overlaps.

R&I actions taking place at a socio-technical level aiming to better understand the science-society relationship (particularly when social practices, market uptake or ownership are concerned) should favour solutions that are grounded in social innovation in order to achieve its desired outcomes, i.e. by matching innovative ideas with social needs and by forming new collaborations between public and private actors, including civil society and researchers from the Social Sciences and Humanities (SSH).

To test CCAM solutions, applicants can seek possibilities of involving the European Commission’s Joint Research Centre (JRC) in order to valorise the relevant expertise and physical facilities of JRC in demonstrating and testing energy and mobility applications of the JRC Living Lab for Future Urban Ecosystems https://ec.europa.eu/jrc/en/research-facility/living-labs-at-the-jrc

The main impacts to be generated by topics targeting connected, cooperative and automated mobility under this Destination are:

  • Validated safety and security, improved robustness and resilience of CCAM technologies and systems.
  • Secure and trustworthy interaction between road users, CCAM and “conventional” vehicles, infrastructure and services to achieve safer and more efficient transport flows (people and goods) and better use of infrastructure capacity.
  • Seamless, affordable and user oriented CCAM based mobility and goods deliveries for all and high public acceptance of these services with clear understanding of its benefits and limits as well as rebound effects; based on the changing mobility needs and desires of a society in transition (digitally and environmentally).
  • Better coordination of R&I and large-scale testing activities in Europe and expanded knowledge base on CCAM solutions.
  • European leadership in the development and deployment of connected and automated mobility and logistics services and systems, ensuring long-term growth and jobs.

Multimodal and sustainable transport systems for passengers and goods

Multimodal and sustainable transport systems are the backbone for efficient mobility of passengers and freight. In particular, the areas of infrastructure, logistics and network/traffic management play a major role in making mobility and transport climate neutral, also through the digitalisation of the sectors. At the same time, being vulnerable to climate change and other disruptions, resilience in these three areas need to be increased. New and advanced infrastructures across all transport modes are required to enable the introduction of new vehicles, operations and mobility services. Furthermore, efficient and smart multimodal logistics are key for seamless and sustainable long-haul, regional and urban freight transport movements. Finally, dynamic multimodal network and traffic management systems are the “glue” of the entire transport network, for optimised door-to-door mobility of both passengers and freight.

To test solutions related to multimodal and sustainable transport systems for passengers and good, applicants may seek possibilities of involving the European Commission’s Joint Research Centre (JRC) in order to valorise the relevant expertise and physical facilities of JRC in demonstrating and testing energy and mobility applications of the JRC Living Lab for Future Urban Ecosystems[[https://ec.europa.eu/jrc/en/research-facility/living-labs-at-the-jrc]].

The main impacts to be generated by topics targeting Multimodal and sustainable transport systems for passengers and goods under this Destination are:

  • Upgraded and resilient physical and digital infrastructure for clean, accessible, affordable, connected and automated multimodal mobility.
  • Sustainable and smart long-haul, regional and urban freight transport and logistics, through increased efficiency, improved interconnectivity and smart enforcement.
  • Reduced external costs (e.g. congestion, traffic jams, emissions, air and noise pollution, road collisions) of urban, peri-urban (regional) and long distance freight transport as well as optimised system-wide network efficiency and resilience.
  • Enhanced local and/or regional capacity for governance and innovation in urban mobility and logistics.

Safety and resilience - per mode and across all transport modes

Safety and resilience are of primary concern for any transport system. The EU set ambitious targets in its 2011 Transport White Paper, the third Mobility Package and, more recently, the Sustainable and Smart Mobility Strategy[[COM(2020) 789 final.]]. COVID-19 has been a stark reminder of the importance of resilience to external disruptions, particularly for transport. Research and innovation will underpin the three pillars affecting safety and resilience: technologies; regulations (alongside acceptable level of risks); and human factors (individual and organisational aspects, including interaction with automation). The approach is risk-based and systemic, including transport means/vehicles, infrastructure, the physical environment (e.g. weather) and the various actors (e.g. manufacturers, regulators, operators, users) as well as all their interfaces, including certification and standardisation bodies.

Synergies should be exploited across research at national, EU and international level together with national authorities, EU agencies and international organisations to improve rulemaking, safety promotion and oversight.

The main impacts to be generated by topics targeting transport safety and resilience under this Destination are:

Safety in Urban Areas/ Road Transport Safety

  • 50% reduction in serious injuries and fatalities in road crashes by 2030.
  • Improved reliability and performance of systems that aim to anticipate and minimize safety risks, avoiding risks and collisions, and reducing the consequences of unavoidable crashes.
  • Drastic reduction of road fatalities and serious crash injuries in low and medium income countries in Africa.
  • Better design principles of future road transport systems enabling also better traffic flow in big cities.

Waterborne Safety and Resilience

  • Ensure healthy passenger shipping by preventing and mitigating the spread of contagious diseases and infections.

Aviation Safety and Resilience

  • Decrease number of accidents and incidents due to organisational/human/automation factors and external hazards in all phases of flight, also beyond CAT category (80% goal in FlightPath2050), while enabling all weather operations.
  • Saving lives following a crash (post-crash survivability).
  • Anticipate emergence of new threats that could generate potential accidents and incidents (short, medium, and long term).
  • Ensure safety through aviation transformation (from green/digital technologies uptake up to independent certification).
  • Maintain safety and resilience despite the scale, pace and diversity of new entrants.
Link Link to Programme
Call
Advanced multimodal network and traffic management for seamless door-to-door mobility of passengers and freight transport
Description of call
"Advanced multimodal network and traffic management for seamless door-to-door mobility of passengers and freight transport"

Expected Outcome

  • Improved multimodal transport network and traffic management capabilities, facilitating seamless door-to-door mobility for passengers and freight.
  • Effective and resilient network-wide data exchange and new integrated data management systems for dynamic and responsive multimodal network and traffic management.
  • Tested and validated systems for enhanced prediction and resolution of network bottlenecks, substantially increasing safety, security, resilience and overall performance of the entire transport network.
  • Innovative tools and services for optimising mobility flows of passengers and freight in cities and other operating environments, cutting congestion, journey times and traffic jams across transport modes, and thereby significantly reducing emissions (CO2, SOx, NOx, particles, noise).
  • New governance arrangements for multimodal transport network and traffic management, in view of further regulatory and policy actions.
  • High market adoption and transferability of innovations to different ecosystems.

Scope

Advanced multimodal network and traffic management capabilities are essential for the efficient operation of the entire transport network and for seamless door-to-door mobility of both passengers and freight. This is even more pertinent in view of new mobility trends and technologies, connected and automated vehicles, new physical and digital infrastructures and innovative services. At the same time however, a number of challenges remain to develop validated concepts and leverage multi-actor data exchange, ensure interoperability of new technologies and develop interfaces across transport modes, as well as to design appropriate governance arrangements for relevant public and private stakeholders.

In this context, building on best practices (technological, non-technological and socio-economic), ongoing projects on multimodal network and traffic management, as well as other initiatives (e.g. the Digital Transport and Logistics Forum), actions should address at least six of the following aspects:

  • Developing and carrying out validation for multimodal, dynamic, (cyber and physically) secure and resilient transport network and traffic management systems, leveraging state of the art technologies (e.g. artificial intelligence, high-performance computing, edge computing).
  • Demonstrating effective collection, analysis and use of network-wide fixed and variable data (e.g. using ICT and EU satellite-based information from vehicles, physical infrastructures and users) and developing integrated data management and monitoring systems, for effective and intelligent multimodal network and traffic management.
  • Developing new methods and tools for harmonised and comparable international monitoring of mobility demand, for passenger mobility and freight transport, including through survey data collection and big data processing, leveraging the opening of service providers’ databases to research and public authorities.
  • Conducting simulations for system-wide optimisation of demand/capacity balancing for multimodal passenger and freight flows, against foreseen (e.g. traffic disruption due to an important city-wide event) and unforeseen scenarios (e.g. major network/traffic disruption as a result of a hazard manifestation or compromise in transport safety due to a health emergency), to enable real-time prediction and balancing of mobility behaviour, as well as early problem detection and resolution.
  • Developing and testing network and traffic management visualisation and decision-making tools (e.g. using big data, artificial intelligence, machine learning), while taking into account regular mobility patterns (including soft modes) and user needs of citizens (including vulnerable road users and different gender groups) and businesses, as well as ad-hoc and flexible mobility-on-demand services, in the context of mobility/logistics as a service.
  • Demonstrating interoperability and enhanced interfaces of network and traffic management systems across stakeholders, transport modes and country borders.
  • Performing early pilot activities on multimodal network/traffic management, of limited scale and in defined environments, such as in the context of urban mobility of passengers and freight.
  • Conceiving, developing and preparing the introduction of next-generation multimodal network and traffic management services, provided by public and/or private stakeholders and operationalised at a centralised and/or decentralised level.
  • Develop and test implementable multi-level governance models, with roles and responsibilities for public and private stakeholders to share data and engage in transport network and traffic management functions, providing recommendations for further regulatory and policy actions.

In line with the Union’s strategy for international cooperation in research and innovation, international cooperation is encouraged.

Link Link to Call
Thematic Focus Research & Innovation, Technology Transfer & Exchange, Clustering, Development Cooperation, Economic Cooperation, Capacity Building, Cooperation Networks, Institutional Cooperation, Digitisation, ICT, Telecommunication, Mobility & Transport/Traffic , Administration & Governance, Justice, Safety & Security, Green Technologies & Green Deal, Community Integration, European Citizenship, Shared Services, Climate, Climate Change, Environment & Biodiversity, Circular Economy, Sustainability, Natural Resources
Funding area EU Member States
Overseas Countries and Territories (OCTs)
Origin of Applicant EU Member States
Overseas Countries and Territories (OCTs)
Eligible applicants Education and Training Centres, Federal State / Region / City / Municipality / Local Authority, Research Institution, Lobby Group / Professional Association / Trade Union, International Organization, Small and Medium Sized Enterprises, SMEs (between 10 and 249 employees), Microenterprises (fewer than 10 employees), NGO / NPO, Public Services, National Government, Other, Start Up Company, University, Enterprise (more than 250 employees or not defined), Association
Applicant details

eligible non-EU countries:

  • countries associated to Horizon Europe
Please see the List of Participating Countries in Horizon Europe for an up-to-date list of countries with which the association agreements have started to produce legal effects (either through provisional application or their entry into force).

  • low-and middle-income countries

Legal entities which are established in countries not listed above will be eligible for funding if provided for in the specific call conditions, or if their participation is considered essential for implementing the action by the granting authority.

Specific cases:

  • Affiliated entities - Affiliated entities are eligible for funding if they are established in one of the countries listed above.
  • EU bodies - Legal entities created under EU law may also be eligible to receive funding, unless their basic act states otherwise.
  • International organisations - International European research organisations are eligible to receive funding. Unless their participation is considered essential for implementing the action by the granting authority, other international organisations are not eligible to receive funding. International organisations with headquarters in a Member State or Associated Country are eligible to receive funding for ‘Training and mobility’actions and when provided for in the specific call conditions.
Project Partner Yes
Project Partner Details

Unless otherwise provided for in the specific call conditions , legal entities forming a consortium are eligible to participate in actions provided that the consortium includes:

  • at least one independent legal entity established in a Member State;and
  • at least two other independent legal entities, each established in different Member States or Associated Countries.
Further info

Proposal page limits and layout:

The application form will have two parts:

  • Part A to be filled in directly online  (administrative information, summarised budget, call-specific questions, etc.)
  • Part B to be downloaded from the Portal submission system, completed and re-uploaded as a PDF in the system

Page limit - Part B: 45 pages

Type of Funding Grants
Financial details
Expected EU contribution per projectThe Commission estimates that an EU contribution of between EUR 4.00 and 5.00 million would allow these outcomes to be addressed appropriately. Nonetheless, this does not preclude submission and selection of a proposal requesting different amounts.
Indicative budgetThe total indicative budget for the topic is EUR 15.00 million.
Typ of ActionResearch and Innovation Actions (RIA)
Funding rate100%

Activities are expected to achieve TRL 5-6 by the end of the project.
Submission Proposals must be submitted electronically via the Funding & Tenders Portal Electronic Submission System. Paper submissions are NOTpossible.

Register now and benefit from additional services - it is free of cost!

News

Published on 23.09.2022

Interreg Maritime - 5th Call

Interreg Maritime

Link to Call

Published on 14.09.2022

Perform EU

Creative Europe - Culture Strand

Link to Call
Loading Animation